
1 Security Assessment Report

DefiTuna
March 14, 2025

Sec3 Report

Summary

The Sec3 team (formerly Soteria) was engaged to conduct a thorough security analysis of the

DefiTuna smart contracts.

The artifact of the audit was the source code of the following programs, excluding tests, in a

private repository.

The initial audit focused on the following versions and revealed 11 issues or questions.

program type commit

DefiTuna Solana 7ced6e0b11d1bcd4126fdc2fd2592dc52f6868b7

This report provides a detailed description of the findings and their respective resolutions.

1

Sec3 Report

Table of Contents

Result Overview.. 3

Findings in Detail .. 4

[M-01] Potential DoS due to uncapped repay amount ... 4

[L-01] Repay may fail in corner cases... 6

[I-01] Unnecessary signer seeds in "UpdateFeesAndRewards" CPI .. 7

[I-02]Missing checks for "mint_a" and "mint_b" in "liquidate_position_orca"............................ 8

[I-03] Incorrect protocol fee calculation in "collect_and_compound_fees_orca"....................... 9

[I-04] Incorrect "fixed_x64_to_f64" implementation.. 10

[I-05] Unnecessary overflow handling in "get_liquidity_for_amount_a" 11

[I-06] Inaccurate swap equation.. 12

[I-07]Missing "auto_compound" check in "collect_and_compound_fees_orca" 14

[Q-01] Questions on several unused field management.. 15

[Q-02] Question on state checks in "collect_and_compound_fees_orca".................................... 17

Appendix: Methodology and Scope of Work... 18

2

Sec3 Report

Result Overview

Issue Impact Status

DEFITUNA

[M-01] Potential DoS due to uncapped repay amount Medium Resolved

[L-01] Repay may fail in corner cases Low Resolved

[I-01] Unnecessary signer seeds in "UpdateFeesAndRewards" CPI Info Resolved

[I-02]Missing checks for "mint_a" and "mint_b" in "liquidate_position_orca" Info Resolved

[I-03] Incorrect protocol fee calculation in "collect_and_compound_fees_orca" Info Resolved

[I-04] Incorrect "fixed_x64_to_f64" implementation Info Resolved

[I-05] Unnecessary overflow handling in "get_liquidity_for_amount_a" Info Resolved

[I-06] Inaccurate swap equation Info Resolved

[I-07]Missing "auto_compound" check in "collect_and_compound_fees_orca" Info Resolved

[Q-01] Questions on several unused field management Question Resolved

[Q-02] Question on state checks in "collect_and_compound_fees_orca" Question Resolved

3

Sec3 Report

Findings in Detail

DEFITUNA
[M-01] Potential DoS due to uncapped repay amount

In the repay_debt instruction, the current implementation does not enforce any restrictions on

the quantity of tokens a user may repay. Both the TunaPosition::decrease_debt_a and decreas

e_debt_b functions update loan shares and loan funds using saturating_sub, which allows the

repaid token amount to potentially exceed the user’s debt.

This oversight not only exposes users to potential losses but, in combination with issue L-01,

couldenableamaliciousactor topreventotherusers frommakingproper repayments. Although

an attackerwould have no incentive to carry out such an attack—given the substantial token ex-

penditure requiredwith no prospect of profit—addressing this issue is recommended to protect

the users.

∕* programs∕tuna∕src∕instructions∕repay_debt.rs *∕
118 | if tuna_position_ata_a.amount > 0 {
119 | vault_a.accrue_interest(timestamp)?;
120 | let (_, shares) = vault_a.repay(tuna_position_ata_a.amount, 0)?;
121 | tuna_position.decrease_debt_a(shares);
122 | }
123 |
124 | if tuna_position_ata_b.amount > 0 {
125 | vault_b.accrue_interest(timestamp)?;
126 | let (_, shares) = vault_b.repay(tuna_position_ata_b.amount, 0)?;
127 | tuna_position.decrease_debt_b(shares);
128 | }

∕* programs∕tuna∕src∕state∕tuna_position.rs *∕
171 | pub fn decrease_debt_a(&mut self, shares: u64) {
172 | if self.loan_shares_a > 0 {
173 | ∕∕ Don't throw an error on overflow, as loan_funds is only used to compute the interest a

user owes.↪→

174 | ∕∕ Precision errors are acceptable in this case.
175 | match mul_div_64(shares, self.loan_funds_a, self.loan_shares_a, Rounding::Up) {
176 | Ok(funds) => {
177 | self.loan_funds_a = self.loan_funds_a.saturating_sub(funds);
178 | }
179 | Err(_) => {
180 | self.loan_funds_a = 0;
181 | }
182 | };
183 | }

4

Sec3 Report

184 |
185 | self.loan_shares_a = self.loan_shares_a.saturating_sub(shares);
186 | }

Resolution

Fixed by commit 1b74d03.

5

Sec3 Report

DEFITUNA
[L-01] Repaymay fail in corner cases

In the protocol, debt is managed using a classic shares-based model. Each mint has a cor-

responding vault that maintains borrowed_funds and borrowed_shares, with the ratio between

these two values determining the value of each share. Within the repay function, the protocol

calculates the corresponding funds or shares amount based on user input, rounding in amanner

that is favorable to the protocol.

However, the update to borrowed_funds is currently performed using checked_sub. Since round-

ing is biased in favor of the protocol, users may end up repaying a slightly higher value in funds

compared to the value of their shares. In certain edge cases, this can cause checked_sub to un-

derflow, leading to a transaction revert and preventing successful repayment. To mitigate this

issue, it is recommended to replace checked_subwith saturating_sub.

∕* programs∕tuna∕src∕state∕vault.rs *∕
189 | self.borrowed_funds = self.borrowed_funds.checked_sub(funds).ok_or(ErrorCode::MathUnderflow)?;

Resolution

Fixed by commit 0b94cd0.

6

Sec3 Report

DEFITUNA
[I-01] Unnecessary signer seeds in "UpdateFeesAndRewards" CPI

In thecollect_feesandcollect_reward functions, thecurrent implementationfirst invokesOrca’s

UpdateFeesAndRewards instruction before proceeding with subsequent operations. Additionally,

the CPI includes the tuna position PDA as a signer.

∕* programs∕tuna∕src∕cpi∕orca∕amm_orca.rs *∕
182 | let ctx = CpiContext::new_with_signer(whirlpool_program.to_account_info(), accounts, seeds);
183 | cpi::update_fees_and_rewards(ctx)?;

∕* programs∕tuna∕src∕cpi∕orca∕amm_orca.rs *∕
213 | let cpi_ctx = CpiContext::new_with_signer(whirlpool_program.clone(), accounts, seeds);
214 | cpi::update_fees_and_rewards(cpi_ctx)?;

However, since Orca’s UpdateFeesAndRewards instruction is publicly callable, the inclusion of the

tuna position PDA as a signer is unnecessary.

∕* programs∕whirlpool∕src∕instructions∕update_fees_and_rewards.rs *∕
008 | pub struct UpdateFeesAndRewards<'info> {
009 | #[account(mut)]
010 | pub whirlpool: Account<'info, Whirlpool>,
011 |
012 | #[account(mut, has_one = whirlpool)]
013 | pub position: Account<'info, Position>,
014 |
015 | #[account(has_one = whirlpool)]
016 | pub tick_array_lower: AccountLoader<'info, TickArray>,
017 | #[account(has_one = whirlpool)]
018 | pub tick_array_upper: AccountLoader<'info, TickArray>,
019 | }

Resolution

Fixed by commit 9cbc2fd.

7

Sec3 Report

DEFITUNA
[I-02]Missing checks for "mint_a" and "mint_b" in "liquidate_position_orca"

In theLiquidatePositionOrca instruction, theprogramacceptsmint_aandmint_baccountswith-

out verifying that they correspond to whirlpool.token_mint_a and whirlpool.token_mint_b, re-

spectively.

∕* programs∕tuna∕src∕instructions∕orca∕liquidate_position_orca.rs *∕
031 | #[account()]
032 | pub mint_a: Box<InterfaceAccount<'info, Mint>>,
033 |
034 | #[account()]
035 | pub mint_b: Box<InterfaceAccount<'info, Mint>>,

As a result, if incorrect mint_a and mint_b accounts are provided, erroneous decimal valuesmay

be used within the check_oracle_price function, leading to incorrect validation results.

∕* programs∕tuna∕src∕instructions∕orca∕liquidate_position_orca.rs *∕
184 | if let Err(err) = check_oracle_price(
185 | &clock,
186 | ctx.accounts.whirlpool.sqrt_price,
187 | &vault_a.pyth_oracle_feed_id.to_bytes(),
188 | &ctx.accounts.pyth_oracle_price_feed_a,
189 | ctx.accounts.mint_a.decimals,
190 | &vault_b.pyth_oracle_feed_id.to_bytes(),
191 | &ctx.accounts.pyth_oracle_price_feed_b,
192 | ctx.accounts.mint_b.decimals,
193 | market.oracle_price_deviation_threshold,
194 |) {
195 | if err == ErrorCode::OracleStalePrice {
196 | ∕∕ It's not fine, but we can't disable liquidations totally if the price feed account is

not updated.↪→

197 | msg!("Ignoring oracle price as it's stale!")
198 | } else {
199 | return Err(err.into());
200 | }
201 | }

∕* programs∕tuna∕src∕utils∕pyth.rs *∕
030 | let oracle_price = (price_a as f64) ∕ (price_b as f64) * 10_f64.powi(price_a_exp - price_b_exp +

decimals_b as i32 - decimals_a as i32);↪→

Resolution

Fixed by commit bb8cb19.

8

Sec3 Report

DEFITUNA
[I-03] Incorrectprotocol feecalculation in "collect_and_compound_fees_orca"

In the collect_and_compound_fees_orca instruction, the collected fees are permitted to be rein-

vested for liquidity provisioning. According to the fee structure defined in the market, this por-

tion of funds should incur fees. However, since these funds are more appropriately classified

as collateral rather than debt, they should be subject to the protocol_fee_on_collateral rate

rather than the protocol_fee rate.

∕* programs∕tuna∕src∕instructions∕orca∕collect_and_compound_fees_orca.rs *∕
154 | let fee_a = mul_div_64(collected_yield_a, ctx.accounts.market.protocol_fee as u64, HUNDRED_PERCENT

as u64, Rounding::Down)?;↪→

155 | let fee_b = mul_div_64(collected_yield_b, ctx.accounts.market.protocol_fee as u64, HUNDRED_PERCENT
as u64, Rounding::Down)?;↪→

156 | msg!("Protocol fees: [{}; {}]", fee_a, fee_b);

Resolution

Fixed by commit 9f73f79.

9

Sec3 Report

DEFITUNA
[I-04] Incorrect "fixed_x64_to_f64" implementation

In the Orca pool, the square root price is stored using an x64 format. To facilitate certain com-

putations, a conversion function fixed_x64_to_f64was implemented. However, the current im-

plementationmistakenly uses FRAC_MASK as the denominator, whereas the correct denominator

should be Q64 (i.e., FRAC_MASK�+�1). Despite this discrepancy, the resulting error is minimal, and

given that this function inherently leads to precision loss in the lower bits, the overall impact of

this issue is negligible.

∕* programs∕tuna∕src∕math∕fixed.rs *∕
011 | pub fn fixed_x64_to_f64(value: u128) -> f64 {
012 | const FRAC_MASK: u128 = u64::MAX as u128;
013 | (value >> 64) as f64 + ((value & FRAC_MASK) as f64) ∕ (FRAC_MASK as f64)
014 | }

Resolution

Fixed by commit 336a81b.

10

Sec3 Report

DEFITUNA
[I-05] Unnecessary overflow handling in "get_liquidity_for_amount_a"

The implementation of get_liquidity_for_amount_a anticipates potential overflowduring com-

putation. Specifically, if the product of intermediate and wide_amount exceeds the U256 range,

the current approach divides wide_amount by delta_sqrt_price before multiplying by intermedi

ate.

However, since amount is defined as a u64 and intermediate is computed bymultiplying twou128

sqrt_price values followed by a right shift of 64 bits, their multiplication will not exceed the

U256 range. Furthermore, if overflow handling were indeed required, the larger number should

be used as the dividend; otherwise, dividing the u64 amount by delta_sqrt_price could yield zero

in such scenarios.

∕* programs∕tuna∕src∕math∕orca∕liquidity.rs *∕
053 | fn get_liquidity_for_amount_a(amount: u64, sqrt_price_lower: u128, sqrt_price_upper: u128) ->

Result<u128> {↪→

054 | let wide_amount = U256::from(amount);
055 | let intermediate = U256::from(sqrt_price_upper).mul(U256::from(sqrt_price_lower)).shr(64);
056 | let delta_sqrt_price = U256::from(sqrt_price_upper - sqrt_price_lower);
057 |
058 | let liquidity: U256 = match intermediate.checked_mul(wide_amount) {
059 | ∕∕ If the previous equation overflows, try another one that does a division first
060 | None => wide_amount
061 | .div(delta_sqrt_price)
062 | .checked_mul(U256::from(intermediate))
063 | .ok_or(ErrorCode::MathOverflow)?,
064 | Some(r) => r.div(delta_sqrt_price),
065 | };

Resolution

Fixed by commit 070c406.

11

Sec3 Report

DEFITUNA
[I-06] Inaccurate swap equation

To enhance user convenience, the current design permits users to supply liquidity using any ar-

bitrary ratio of token A and token B. Subsequently, the protocol invokes Orca’s swap function to

adjust the quantities of both tokens based on the Orca pool’s square root price, thereby achiev-

ing the appropriate ratio for liquidity provision. However, because the swap itself affects the

pool’s square root price, the computation becomes considerablymore complex. The current im-

plementation employs the bisection method to approximate the root of the following equation,

determining the expected post-swap square root price, which is then used to calculate the nec-

essary token swap amount.

However, in Orca’s swap implementation, the fee is always collected in the form of the input

token. That is, if the swap direction is from token A to token B, the fee is charged in token A, and

vice versa. This behavior is not properly reflected in the equation.

∕* programs∕tuna∕src∕manager∕swap.rs *∕
087 | ∕∕∕ # Arguments
088 | ∕∕∕
089 | ∕∕∕ * `p` - sqrt price after a swap
090 | ∕∕∕ * `p0` - current pool sqrt price
091 | ∕∕∕ * `pl` - lower sqrt price
092 | ∕∕∕ * `pu` - upper sqrt price
093 | ∕∕∕ * `x` - amount of x tokens
094 | ∕∕∕ * `y` - amount of y tokens
095 | ∕∕∕ * `liquidity` - current liquidity
096 | ∕∕∕ * `f` - (1.0 - swap_fee)
097 | ∕∕∕
098 | ∕∕∕ # Description
099 | ∕∕∕
100 | ∕∕∕ Deposit ratio = x∕y = (√Pu - √P) ∕ (√P � √Pu � (√P - √Pl))
101 | ∕∕∕
102 | ∕∕∕ Deposit ratio = x∕y = (x + L�(1∕√P0 - 1∕√P)) ∕ (y + L�(√P0 - √P)�(1-fee))
103 | ∕∕∕
104 | ∕∕∕ Using above we can write
105 | ∕∕∕
106 | ∕∕∕ => (x + L�(1∕√P0 - 1∕√P)) ∕ (y + L�(√P0 - √P)�(1-fee)) = (√Pu - √P) ∕ (√P � √Pu � (√P - √Pl))
107 | ∕∕∕
108 | ∕∕∕ => (x + L∕√P0 - L∕√P) � (√P � √Pu � (√P - √Pl)) - (y + L�(√P0 - √P)�(1-fee)) � (√Pu - √P) = 0
109 | fn swap_equation(price: f64, current_price: f64, lower_price: f64, upper_price: f64, x: f64, y:

f64, liquidity: f64, one_minus_fee: f64) -> f64 {↪→

110 | (x + liquidity ∕ current_price - liquidity ∕ price) * (price * upper_price * (price -
lower_price))↪→

111 | - (y + liquidity * (current_price - price) * one_minus_fee) * (upper_price - price)

12

Sec3 Report

112 | }

Resolution

Fixed by commit 56df6d2.

13

Sec3 Report

DEFITUNA
[I-07]Missing "auto_compound" check in "collect_and_compound_fees_orca"

In the TunaPosition account, there is an auto_compound boolean field that indicates whether a

position should automatically compound its yield.

However, in the collect_and_compound_fees_orca instruction, this field is not being verified, al-

lowing a liquidator to perform compounding on any position regardless of the user’s auto_co

mpound setting. Although no third-party liquidators currently exist—and any necessary checks

might be performed off-chain—it is recommended that this verification be implemented within

the program.

∕* programs∕tuna∕src∕state∕tuna_position.rs *∕
078 | ∕∕∕ Set to true for yield auto compounding.
079 | pub auto_compound: bool,

∕* programs∕tuna∕src∕instructions∕orca∕collect_and_compound_fees_orca.rs *∕
037 | #[account(
038 | mut,
041 | constraint = tuna_position.authority == authority.key() || tuna_config.liquidator_authority ==

authority.key(),↪→

043 |)]
044 | pub tuna_position: Box<Account<'info, TunaPosition>>,

Resolution

Fixed by commit 9f73f79.

14

Sec3 Report

DEFITUNA
[Q-01] Questions on several unused field management

In the current implementation, several fields are maintained within the program but are not ac-

tively utilized—potentially because they are intended for use only by the frontend or other off-

chain keeper programs. We have the following questions regarding the management of these

fields:

1. TunaPosition::compounded_yield_a & TunaPosition::compounded_yield_b

According to the documentation, these fields represent the yield amount in token A/B that

has been collected and compounded into the position. In practice, these values are in-

creased by the amount of collected yield minus the fee in the collect_and_compound_fee

s_orca instruction. Additionally, in the remove_liquidity_orca instruction, a proportional

amount of the compounded yield—corresponding to the liquidity removed—is deducted

from the total compounded yield.

However, in the liquidate_position_orca instruction, when a position is completely closed,

the yield available for collection is added to the compounded yield. Could you please clar-

ify the rationale behind this approach? Furthermore, in scenarios where the position is not

fully closed, should the compounded yield be reduced proportionally, similar to the behav-

ior in the remove_liquidity_orca instruction?

∕* programs∕tuna∕src∕instructions∕orca∕collect_and_compound_fees_orca.rs *∕
158 | tuna_position.compounded_yield_a += collected_yield_a - fee_a;
159 | tuna_position.compounded_yield_b += collected_yield_b - fee_b;

∕* programs∕tuna∕src∕instructions∕orca∕remove_liquidity_orca.rs *∕
294 | ∕∕ If the position is decreased, the compounded yield amount is also decreased proportionally.
295 | tuna_position.compounded_yield_a -= mul_div_64(tuna_position.compounded_yield_a,

withdraw_percent as u64, HUNDRED_PERCENT as u64, Rounding::Down)?;↪→

296 | tuna_position.compounded_yield_b -= mul_div_64(tuna_position.compounded_yield_b,
withdraw_percent as u64, HUNDRED_PERCENT as u64, Rounding::Down)?;↪→

297 |

∕* programs∕tuna∕src∕instructions∕orca∕liquidate_position_orca.rs *∕
247 | if full_position_close {
248 | ∕∕ Collect yield
249 | collect_fees(
250 | tuna_position,
251 | ctx.accounts.whirlpool.to_account_info(),

15

Sec3 Report

252 | orca_position.to_account_info(),
253 | ctx.accounts.tuna_position_ata.to_account_info(),
254 | ctx.remaining_accounts[POOL_VAULT_ATA_A_RA_INDEX].to_account_info(),
255 | ctx.remaining_accounts[POOL_VAULT_ATA_B_RA_INDEX].to_account_info(),
256 | tuna_position_ata_a.to_account_info(),
257 | tuna_position_ata_b.to_account_info(),
258 | ctx.accounts.token_program.to_account_info(),
259 | ctx.accounts.whirlpool_program.to_account_info(),
260 | ctx.remaining_accounts[TICK_ARRAY_LOWER_RA_INDEX].to_account_info(),
261 | ctx.remaining_accounts[TICK_ARRAY_UPPER_RA_INDEX].to_account_info(),
262 |)?;
263 |
264 | tuna_position_ata_a.reload()?;
265 | tuna_position_ata_b.reload()?;
266 |
267 | let collected_yield_a = tuna_position_ata_a.amount - tuna_position_amount_before_a;
268 | let collected_yield_b = tuna_position_ata_b.amount - tuna_position_amount_before_b;
269 | tuna_position.compounded_yield_a += collected_yield_a;
270 | tuna_position.compounded_yield_b += collected_yield_b;
271 | msg!("Collected yield: [{}; {}]", collected_yield_a, collected_yield_b);
272 | }

2. Market::liquidity_provider

The Market account contains a liquidity_provider field intended to indicate whether the

currentmarket is associatedwith Orca or, potentially in the future, Raydium. However, sub-

sequent code that uses theMarket account does not performany checks on this field. Given

that the Market account already includes a pool field, which is sufficient to prevent poten-

tial type confusion issues, is this omission of a check on liquidity_provider intentional?

Resolution

1. TunaPosition::compounded_yield_a & TunaPosition::compounded_yield_b

Fixed by commit 71a4f55.

2. Market::liquidity_provider

The team clarified that this field is not used anywhere.

16

Sec3 Report

DEFITUNA
[Q-02] Question on state checks in "collect_and_compound_fees_orca"

In the collect_and_compound_fees_orca instruction, the only program/market state check cur-

rently implemented is for tuna_config.suspend_remove_liquidity.

However, since this instruction actually adds liquidity, should the check be switched to tuna_

config.suspend_add_liquidity instead of suspend_remove_liquidity, and should an additional

check for market.disabled also be incorporated?

∕* programs∕tuna∕src∕instructions∕orca∕collect_and_compound_fees_orca.rs *∕
117 | if ctx.accounts.tuna_config.suspend_remove_liquidity {
118 | return Err(ErrorCode::Suspended.into());
119 | }

Resolution

Fixed by commit 095b765.

17

Sec3 Report

Appendix: Methodology and Scope ofWork

Assisted by the Sec3 Scanner developed in-house, the manual audit particularly focused on the

following work items:

• Check common security issues.

• Check program logic implementation against available design specifications.

• Check poor coding practices and unsafe behavior.

• The soundness of the economics design and algorithm is out of scope of this work

18

The instance report ("Report")waspreparedpursuant toanagreementbetweenCoderrect

Inc. d/b/a Sec3 (the "Company") and CrypticDot dba DefiTuna (the "Client''). This Report

solely includes the results of a technical assessment of a specific build and/or version

of the Client's code specified in the Report ("Assessed Code") by the Company. The sole

purpose of the Report is to provide the Client with the results of the technical assessment

of the Assessed Code. The Report does not apply to any other version and/or build of the

Assessed Code. Regardless of the contents of the Report, the Report does not (and should

not be interpreted to) provide anywarranty, representation or covenant that theAssessed

Code: (i) is error and/or bug free, (ii) has no security vulnerabilities, and/or (iii) does not

infringe any third-party rights. Moreover, the Report is not, and should not be considered,

an endorsement by the Company of the Assessed Code and/or of the Client. Finally, the

Report should not be considered investment advice or a recommendation to invest in the

Assessed Code and/or the Client.

This Report is considered null and void if the Report (or any portion thereof) is altered in

any manner.

DISCLAIMER

The Sec3 audit team comprises a group of computer science professors, researchers, and

industry veterans with extensive experience in smart contract security, program analy-

sis, testing, and formal verification. We are also building automated security tools that

incorporate static analysis, penetration testing, and formal verification.

At Sec3, we identify and eliminate security vulnerabilities through the most rigorous pro-

cess and aided by the most advanced analysis tools.

For more information, check out our website and follow us on twitter.

ABOUT

https://www.sec3.dev/
https://twitter.com/Sec3dev

	Result Overview
	Findings in Detail
	[M-01] Potential DoS due to uncapped repay amount
	[L-01] Repay may fail in corner cases
	[I-01] Unnecessary signer seeds in "UpdateFeesAndRewards" CPI
	[I-02] Missing checks for "mint_a" and "mint_b" in "liquidate_position_orca"
	[I-03] Incorrect protocol fee calculation in "collect_and_compound_fees_orca"
	[I-04] Incorrect "fixed_x64_to_f64" implementation
	[I-05] Unnecessary overflow handling in "get_liquidity_for_amount_a"
	[I-06] Inaccurate swap equation
	[I-07] Missing "auto_compound" check in "collect_and_compound_fees_orca"
	[Q-01] Questions on several unused field management
	[Q-02] Question on state checks in "collect_and_compound_fees_orca"
	Appendix: Methodology and Scope of Work

